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X-ray absorption spectroscopy (XAS) experimental 
setup

“white” x-rays 
from 

synchrotron

double-crystal 
monochromator

collimating 
slits

ionization detectors

I0 I1 I2

beam-stop

LHe cryostat
sample

reference sample

• sample absorption is given by

µµµµ t = loge(I0/I1)

• reference absorption is

µµµµREF t = loge(I1/I2)

• NOTE: because we are always taking 
relative-change ratios, detector gains 

don’t matter!



X-ray absorption spectroscopy

• Main features are single-electron excitations.

• Away from edges, energy dependence fits a power law: µ∝µ∝µ∝µ∝AE-3+BE-4

(Victoreen).

• Threshold energies E0~Z2, absorption coefficient µµµµ~Z4.
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X-ray absorption fine-structure (XAFS) 
spectroscopy
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• Peak width depends on back-scattering amplitude F(k,r) , the Fourier transform 
(FT) range, and the distribution width of g(r), a.k.a. the Debye-Waller s.

• Do NOT read this strictly as a radial-distribution function! Must do detailed 
FITS!
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“Heuristic” derivation

• In quantum mechanics, absorption is given by “Fermi’s 
Golden Rule”:
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How is final state wave function modulated?

• Assume photoelectron reaches the 
continuum within dipole approximation:
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Assumed both harmonic potential AND 
kσσσσ<<1: problem at high k and σσσσ

Assumed plane wave scattering, curved 
wave has r-dependence

solution: substitute Feff full curved wave 
theory

Other factors

• Allow for multiple atoms Ni in a shell i and a distribution function 
function of bondlengths within the shell g(r)
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EXAFS equation derivation

• This “simple” version is from the Ph.D. thesis of Guoguong Li, UC Santa Cruz 1994, adapted 
from Teo, adapted from Lee 1974. See also, Ashley and Doniach 1975.
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derivation continued…

• Some, er, “simplifications”:
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• Rewrite I1, I2 and I3
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Finishing derivation, beginning polarization

• Notice θθθθ (angle w.r.t. polarization): can eliminate certain peaks!
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L2 and L3 edges appear more complicated

• 2p1/2 or 2p3/2 core hole and a mixed s and d final state
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polarization vs. spherically averaged

• L2 and L3 mostly d final states (yeah!)
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Corrections and Concerns

• “Normal” EXAFS performed on powder samples in 
transmission
— can tune the thickness

• Want ∆µ∆µ∆µ∆µt~<1 and µµµµt < 3
• We like stacking strips of scotch tape

— can make a flat sample
— diffraction off the sample not a problem

• Working with oriented materials: single crystals, films
— usually cannot get the perfect thickness: too thick

• fluorescence mode data collection
• self-absorption can be substantial!
• dead-time of the detector



Fluorescence mode
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the way out

• Competing effects:

— glancing angle, sample acts very 
thick, always get a photon, XAFS 
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The full correction

• With the above approximation, we can finally write the full 
correction:
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Correction applied to a 4.6 µµµµm Cu foil
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• Data collected on BL 11-2 at SSRL in transmission and 
fluorescence using a 32-element Canberra germanium 
detector, corrected for dead time.
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Fitting the data to extract structural information

• Fit is to the standard EXAFS equation using either a theoretical calculation or an 
experimental measurement of Feff

• Typically, polarization is spherically averaged, doesn’t have to be

• Typical fit parameters include: Ri, Ni, σσσσi, ∆∆∆∆E0

• Many codes are available for performing this fits:

— EXAFSPAK

— IFEFFIT
• SIXPACK

• ATHENA

— GNXAS
— RSXAP
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FEFF: a curved-wave, multiple scattering EXAFS 
and XANES calculator

• The FEFF Project is lead by John Rehr and is very widely used and trusted

• Calculates the complex scattering function Feff(k) and the mean-free path λλλλ

TITLE   CaMnO3 from Poeppelmeier 1982

HOLE 1   1.0     Mn K edge  (  6.540 keV), s0^2=1.0

POTENTIALS

*   ipot z  label

0   22   Mn

1    8   O 

2   20   Ca

3   22   Mn

ATOMS

0.00000     0.00000 0.00000 0   Mn 0.00000

0.00000    -1.85615     0.00000    1   O(1)  1.85615

0.00000     1.85615     0.00000    1   O(1)  1.85615

-1.31250     0.00000     1.31250    1   O(2)  1.85616

1.31250     0.00000    -1.31250    1   O(2)  1.85616

1.31250     0.00000     1.31250    1   O(2)  1.85616

-1.31250     0.00000    -1.31250    1   O(2)  1.85616

0.00000     1.85615    -2.62500    2   Ca    3.21495

-2.62500     1.85615     0.00000    2   Ca    3.21495

-2.62500    -1.85615     0.00000    2   Ca    3.21495

0.00000     1.85615     2.62500    2   Ca    3.21495
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Phase shifts: functions of k

• sin(2kr+φφφφtot(k))): linear part of 
φφφφ(k) will look like a shift in r slope 
is about -2x0.35 rad Å, so peak in 

r will be shifted by about 0.35 Å
• Both central atom and 
backscattering atom phase shifts 
are important

• Can cause CONFUSION: 
sometimes possible to fit the wrong 

atomic species at the wrong 

distance!

• Luckily, different species have 
reasonably unique phase and 
scattering functions (next slide)
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Species identification: phase and magnitude 
signatures
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• First example: same structure, first neighbor 
different, distance between Re and Ampmax shifts

• Note Ca (peak at 2.8 Å) and C have nearly the 
same profile

• Magnitude signatures then take over
• Rule of thumb is you can tell difference in species 

within ∆∆∆∆Z~2, but maintain constant vigilance!



More phase stuff: r and E0 are correlated

• When fitting,∆∆∆∆E0 generally is allowed to float (vary)
• In theory, a single ∆∆∆∆E0 is needed for a monovalent absorbing 

species
• Errors in ∆∆∆∆E0 act like a phase shift and correlate to errors in 

R!
consider error εεεε in E0: ktrue=0.512[E-(E0+εεεε)]1/2

for small εεεε, k=k0-[(0.512)2/(2k0)]εεεε
eg. at k=10Å-1 and εεεε=1 eV, ∆∆∆∆r~0.013 Å

• This correlation is not a problem if kmax is reasonably large
• Correlation between N, S0

2 and σσσσ is a much bigger problem!



1 2 3 4

-40

-20

0

20

40

r (Å)

FT
 o

f k
3 χ

(k
)

U LIII edge

 data
 fit

Information content in EXAFS

• k-space vs. r-space fitting are equivalent if done correctly!
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• r-range in k-space fits is determined by scattering shell with highest R
• k-space direct comparisons with raw data (i.e. residual calculations) are 

incorrect: must Fourier filter data over r-range
• All knowledge from spectral theory applies! Especially, discrete sampling 

Fourier theory…



Fourier concepts

• highest “frequency” rmax=ππππ(2δδδδk)-1 (Nyquist frequency)
eg. for sampling interval ∆∆∆∆k=0.05 Å-1, rmax=31 Å

• for Ndata, discrete Fourier transform has Ndata, too! Therefore…

FT resolution is δδδδR=rmax/Ndata=ππππ/(2kmax), eg. kmax=15 Å-1, δδδδR=0.1 Å
• This is the ultimate limit, corresponds to when a beat is observed in two 

sine wave δδδδR apart. IF YOU DON’T SEE A BEAT, DON’T RELY ON 
THIS EQUATION!!
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More Fourier concepts

• Assuming Ndata are independent data points, and a fit range over k (and r!):
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• Fit degrees of freedom νννν=Nind-Nfit

• Generally should never have Nfit>=Nind (νννν<1)
• But what does this mean? It means that

For every fit parameter exceeding Nind, there is another linear combination 
of the same Nfit parameters that produces EXACTLY the same fit function



Systematic errors: calculations are not perfect!

Kvitky, Bridges and van 
Dorssen, Phys. Rev. B 64, 

214108 (2001).



• Systematic errors for nearest-neighbor shells are about 0.005 Å in R,     
5% in N, 10% in σσσσ (Li, Bridges, Booth 1995)

• Systematic error sources:
— sample problems (pin holes, glitches, etc.)
— correction errors: self-absorption, dead time, etc.
— backscattering amplitudes
— overfitting (too many peaks, strong correlations between parameters)

• Random error sources:
— some sample problems (roughly, small sample and moving beam)
— low counts (dilute samples)

Systematic vs. Random error



Systematic vs. Random error
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Error analysis options

• Use error analysis in fitting code (generally from the 
covariance matrix)
— Always requires assumptions

• a single error at all r or k is assumed
• systematic errors ignored
• can be useful in conjunction with other methods

• Collect several scans, make individual fits to each scan, 
calculate standard deviation in parameters pi

— Fewer assumptions
• random errors treated correctly as long as no nearby minima in 

χχχχ2(pi) exist
• systematic errors lumped into an unaccounted shift in <pi>

• Best method(?): Monte Carlo



• EXAFS as a technique is not count-rate limited: It is limited 
by the accuracy of the backscattering functions

• This does NOT mean that you should ignore the quality of the 
fit!

• DO a Chi2 test, observe whether Chi2=degrees of freedom
— one limit: random noise is large, and you have a 

statistically sound fit
— other limit: random noise is small, and you will then know 

how large the problem with the fit is



not so Advanced Topic: F-test

• F-test, commonly used in crystallography to test one fitting model versus 
another

F=(χχχχ1
2/νννν1)/(χχχχ0

2/νννν0)≈ν≈ν≈ν≈ν0/νννν1××××R1
2/R0

2

(if errors approximately cancel)

alternatively: F=[(R1
2-R0

2)/(νννν1-νννν0)]/(R0
2/νννν0)

• Like χχχχ2 , F-function is tabulated, is given by incomplete beta function
• Advantages of a χχχχ2-type test:

—don’t need to know the errors!



F-test how-to
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Example and limitations

• consider 4 different samples with various amount of species 
TcSx: Are they interconnected?

— ∆∆∆∆r=4.5-1 Å ∆∆∆∆k=13.3-2 Å-1, n=26.8
— model 0 has Tc neighbors and m=14 parameters, R0=0.078 

to 0.096
—model 1 has only S neighbors and m=10, R0=0.088 to 0.11
—dimension of the hypothesis b=14-10=4

—each data set, αααα between 35 and 82%, all together 99.9%
• Effect of systematic error: increases R0 and R1 same amount
• This will decrease the % improvement, making it harder to 

pass the F-test (right direction!)
• Failure mode: fitting a peak due to systematic errors in Feff



Finishing up

• Never report two bond lengths that break the rule

• Break Stern’s rule only with extreme caution

• Pay attention to the statistics



Further reading

• Overviews:
—B. K. Teo, “EXAFS: Basic Principles and Data Analysis” (Springer, 

New York, 1986).
—Hayes and Boyce, Solid State Physics 37, 173 (192).

• Historically important: 
—Sayers, Stern, Lytle, Phys. Rev. Lett. 71, 1204 (1971).

• History
—Lytle, J. Synch. Rad. 6, 123 (1999). 

(http://www.exafsco.com/techpapers/index.html)
—Stumm von Bordwehr, Ann. Phys. Fr. 14, 377 (1989).

• Theory papers of note:
—Lee, Phys. Rev. B 13, 5261 (1976).
—Rehr and Albers, Rev. Mod. Phys. 72, 621 (2000).

• Useful links
—xafs.org (especially see Tutorials section)
—http://www.i-x-s.org/ (International XAS society)
—http://www.csrri.iit.edu/periodic-table.html (absorption calculator)



Further reading

• Thickness effect: Stern and Kim, Phys. Rev. B 23, 3781 (1981).
• Particle size effect: Lu and Stern, Nucl. Inst. Meth. 212, 475 (1983).
• Glitches:

—Bridges, Wang, Boyce, Nucl. Instr. Meth. A 307, 316 (1991); Bridges, 
Li, Wang, Nucl. Instr. Meth. A 320, 548 (1992);Li, Bridges, Wang, 
Nucl. Instr. Meth. A 340, 420 (1994).

• Number of independent data points: Stern, Phys. Rev. B 48, 9825 (1993).
• Theory vs. experiment:

—Li, Bridges and Booth, Phys. Rev. B 52, 6332 (1995).
—Kvitky, Bridges, van Dorssen, Phys. Rev. B 64, 214108 (2001).

• Polarized EXAFS:
—Heald and Stern, Phys. Rev. B 16, 5549 (1977).
—Booth and Bridges, Physica Scripta T115, 202 (2005). (Self-absorption)

• Hamilton (F-)test:
—Hamilton, Acta Cryst. 18, 502 (1965).
—Downward, Booth, Lukens and Bridges, AIP Conf. Proc. 882, 129 

(2007). http://lise.lbl.gov/chbooth/papers/Hamilton_XAFS13.pdf


